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The majority of transcriptome sequencing (RNA-seq) expression studies in plants remain underutilized and inaccessible due to
the use of disparate transcriptome references and the lack of skills and resources to analyze and visualize these data. We have
developed expVIP, an expression visualization and integration platform, which allows easy analysis of RNA-seq data combined
with an intuitive and interactive interface. Users can analyze public and user-specified data sets with minimal bioinformatics
knowledge using the expVIP virtual machine. This generates a custom Web browser to visualize, sort, and filter the RNA-seq
data and provides outputs for differential gene expression analysis. We demonstrate expVIP’s suitability for polyploid crops and
evaluate its performance across a range of biologically relevant scenarios. To exemplify its use in crop research, we developed a
flexible wheat (Triticum aestivum) expression browser (www.wheat-expression.com) that can be expanded with user-generated
data in a local virtual machine environment. The open-access expVIP platform will facilitate the analysis of gene expression data
from a wide variety of species by enabling the easy integration, visualization, and comparison of RNA-seq data across

experiments.

The global demand for staple crops is predicted to
double by 2050 (FAO, 2009; Tilman et al., 2011), which
will require an annual increase in yield of approxi-
mately 2.4% (Ray et al., 2013). However, currently,
yields of the major crops maize (Zea mays), rice (Oryza
sativa), wheat (Triticum aestivum), and soybean (Glycine
max) are increasing only at 1.6%, 1%, 0.9%, and 1.3% per
year, respectively (Ray et al., 2013). The advent of the
genomics era represents a great opportunity to accel-
erate the pace of yield increase in staple crops, for ex-
ample, by facilitating novel breeding strategies (Heffner
et al., 2009) and providing unprecedented numbers of
genetic markers (Bevan and Uauy, 2013). In particular,
transcriptome sequencing (RNA-seq) is a widely
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adopted genomics approach in crops due to its rela-
tively low cost (Wang et al., 2009), its suitability for
nonmodel organisms (Ekblom and Galindo, 2011),
and the multiple downstream applications of the data
generated. These features have driven the generation
of a wealth of expression data with over 9,000 RNA-
seq samples currently available at public repositories,
such as the National Center for Biotechnology Infor-
mation (NCBI)/ENA for the major agricultural crops
(Table I).

Although several public databases containing gene
expression data for plant species exist (Lawrence et al.,
2007; Ouyang et al., 2007; Dash et al., 2012), these re-
sources do not make full use of the expression data
available in SRAs, frequently relying on a subset of
experiments or microarray data. Similarly, pipelines
have been proposed to allow the reanalysis of expres-
sion data that provide useful functionality but limit the
number of samples that can be analyzed (D’Antonio
et al.,, 2015), have limited visualization outputs (Fonseca
etal., 2014), or require the user to process their own data
before uploading to a visualization tool (Nussbaumer
et al., 2014). In most cases, visualization tools are static
and do not allow meaningful comparison of data. In
addition, many studies used disparate transcriptome
assemblies or annotations that hinder the possibility to
compare results across different biological samples
(Gillies et al., 2012; Pfeifer et al., 2014). Thus, despite the
significant investment in RNA-seq studies across the
major agricultural crops, these data remain largely
underutilized and inaccessible to the majority of
breeders and biologists due to the lack of common
platforms and resources to analyze the data.
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We have developed expVIP (expression Visualiza-
tion and Integration Platform), an adaptable platform
to create a gene expression interface for any species
with a transcriptome assembly available. We provide
a user-friendly virtual machine implementation
allowing breeders and biologists to access this re-
source on a desktop personal computer. expVIP takes
an input of RNA-seq reads (from single or multiple
studies), quantifies expression per gene using the fast
pseudoaligner kallisto (Bray et al., 2015), and creates a
database containing expression and sample informa-
tion. This platform allows comparisons across studies,
and the output is viewable as a Web browser interface
with intuitive and interactive filtering, sorting, and
export options.

We have implemented expVIP on wheat to demon-
strate its potential to be applied to crop species. In
particular, our analysis of wheat data demonstrates the
pipeline’s ability to handle data from polyploid species,
a key aspect for agricultural research, since many of the
world’s major crops are polyploid or have undergone
recent whole-genome duplication events (Bevan and
Uauy, 2013; Table I). In the case of wheat, we rean-
alyzed 418 RNA-seq samples from 16 studies including
diverse developmental time courses, tissues, pathogen
infections, and abiotic stresses. We conducted a series of
analyses to demonstrate its utility for candidate gene
characterization and its potential to compare across
independent studies and generate novel hypotheses.
Using expVIP, we developed a wheat expression
browser (www.wheat-expression.com) as a community

Table I. Publicly available RNA sequencing samples in the NCBI short
read archive (SRA) for the top 10 crops based on production (FAO,
2015) and additional agricultural species (as of August 5, 2015)

Ploidy levels and evidence of recent whole-genome duplication
(WGD) events are shown.

Samples in the Ploidy

Species (Common Name) SRA Database (Recent WGD)

Saccharum officinarum 46 8X/10X
(sugarcane)

Zea mays (maize) 3,514 2X (WGD)

Oryza sativa (rice) 1,264 2X

Triticum aestivum (wheat) 799 6X

Solanum tuberosum (potato) 337 4%

Manihot esculenta (cassava) 61 2%

Glycine max (soybean) 972 2X (WGD)

Beta vulgaris (sugar beet) 32 2%

Solanum lycopersicum 830 2X
(tomato)

Hordeum vulgare (barley) 269 2X

Musa acuminata (banana) 73 2X/3X (WGD)

Sorghum bicolor (sorghum) 128 2X

Brassica spp. (field mustard 835 2X/4X
and oilseed rape)

Phaseolus vulgaris 106 2X
(common bean)

Gossypium hirsutum 468 4x
(cotton)

Vitis vinifera (grape) 448 2%
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resource to access publicly available wheat RNA-seq
data.

RESULTS
Pipeline for Expression Analysis and Browser Interface

We developed expVIP (Fig. 1), which pseudoaligns
and quantifies short reads from RNA-seq experiments to
detect and visualize gene expression data through a
user-friendly interface. expVIP requires three input files:
the RNA-seq reads, a reference transcriptome, and the
metadata from the RNA-seq studies. Since the reference
transcriptome is user specified, expVIP can facilitate the
analysis of RNA-seq data from any species and can
use custom reference sequences. expVIP is available
in two formats from Github: (1) the source code and
(2) avirtual machine implementation that allows easy
use of the pipeline and data display from a desktop
machine without requiring bioinformatics expertise
(see “Materials and Methods”).

To illustrate the uses and flexibility of expVIP, we
have implemented it to create a wheat gene expression
browser (www.wheat-expression.com; Supplemental
Text S1), which until now has been lacking in this im-
portant crop species. This browser can be used directly
with the available wheat expression data, or users can
add their own wheat RNA-seq reads to place their data
within a wider context of previously published studies.
Similar gene expression browsers can be easily devel-
oped for any species using the virtual machine or
source code.

Global Analysis in Wheat: Validation of Methods

We used expVIP to analyze 16 wheat gene expression
studies from the SRA across a range of tissues, devel-
opmental stages, and stress conditions (Table II). In
total, these included 418 individual samples containing
over 11 billion reads, of which 7.4 billion mapped to the
reference International Wheat Genome Sequencing
Consortium (IWGSC) gene models from EnsemblPlants
containing 103,274 genes (Supplemental Table S1). The
median number of reads per study was 213 million,
with 137 million reads mapped per study.

We found that 99% of genes (102,259) had at least one
read mapping to them, and 85% of genes (88,528) were
expressed in at least one sample at over 2 transcripts per
million (tpm), which has been advocated as the cutoff
for real expression over noise (Wagner et al., 2013).
Using this cutoff, on average, 34% of genes (35,549)
were expressed per sample, with a minimum expres-
sion of 11% of genes (10,899) at 20 DPA in the starchy
endosperm and a maximum of 48% of genes (50,224)
expressed in the spike at anthesis.

We found that, across all samples, there was a weak
(adjusted * = 0.07), albeit significant (P = 1.48 X 1079%),
relationship between the number of mapped reads and
the number of genes expressed. This indicates that,
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Figure 1. Implementation of expVIP. User inputs are highlighted in
green. Downstream differential gene expression analysis (blue) can
be performed on expVIP outputs, which are preformatted for this use.
External programs are in rectangles, document symbols represent inputs
and outputs, the trapezoid represents the visualization interface, and
the cylinder represents the expVIP relational database.

although our samples varied widely in their number of
mapped reads (1.1-63.6 million), this did not limit
comparisons between studies (Supplemental Fig. S1).
We investigated whether, despite coming from di-
verse studies, tissue-specific expression patterns could
be detected. We found that, in general, expression
profiles were similar between samples from the same
tissue (Fig. 2). For example, grain samples (Fig. 2, red)
originating from seven independent studies were
found in one main group and leaf and stem samples
(Fig. 2, green) from nine studies largely belonged to two
groups. However, in some cases, samples from differ-
ent tissues clustered together, including root samples,
which grouped with leaf/stem and spike samples. To
further examine the expression patterns of genes in

different tissues, we identified the 10 most highly
expressed genes in grain and leaves (Supplemental
Table S2). We found that, in the grain, six out of the 10
most highly expressed genes encode components of
gluten, which is the principal storage protein in wheat
grain (Shewry, 2009). In the leaves, several of the most
highly expressed genes are related to photosynthesis
(Andersson and Backlund, 2008). These results indicate
that our data analysis reflects the expected gene ex-
pression profiles and supports combining of data from
diverse studies.

Accurate Read Mapping Enables Homeologue Specificity

Many crop species are polyploids that contain closely
related homeologous genomes, which share highly
similar nucleotide sequences within coding regions.
This poses a challenge for assigning short reads to the
correct gene copy (homeologue). To assess whether
kallisto could correctly assign reads to the relevant
homeologue, we used a unique genetic resource avail-
able in wheat: nullitetrasomic lines (Sears, 1954). Normal
bread wheat contains three copies of most genes, one on
each of the A, B, and D homeologous chromosomes, and
these genes share over 95% identity in coding sequences
(Krasileva et al.,, 2013). In nullitetrasomic lines, one
chromosome is specifically deleted (nulli) and compen-
sated by an additional copy of a homeologous chromo-
some (tetra). Nullitetrasomic lines for chromosome 1 had
been sequenced previously (SRP028357), and we used
the data in our analysis.

For this analysis, we selected only genes present as
three homeologous copies on group 1 chromosomes,
with at least one homeologue expressed at over 2 tpm in
the wild type (2,645 genes in shoots and 3,445 genes in
roots). We compared the expression of genes located on

Table Il. SRA studies analyzed with expVIP

Study Identifier Summary Total Reads Mapped Reads and Percentage Reference
DRP000768 Phosphate starvation in roots and shoots 118,053,746 84,529,715 (72%) Oono et al. (2013)
ERP003465 Fusarium head blight-infected spikelets 1,827,362,091 1,357,197,955 (74%) Kugler et al. (2013)
ERP004505 Grain tissue-specific developmental time course 873,709,556 475,184,621 (54%) Pfeifer et al. (2014)
SRP004884 Flag leaf down-regulation of GPC 209,427,573 121,855,143 (58%) Cantu et al. (2011)
SRP013449 Grain tissue-specific developmental time course 132,702,451 82,417,257 (62%) Gillies et al. (2012)
SRP017303 Stripe rust-infected seedlings 33,361,836 13,732,210 (41%) Cantu et al. (2013)
SRP022869 Septoria tritici-infected seedlings 100,582,632 63,155,877 (63%) Yang et al. (2013)
SRP028357 Shoots and leaves of nullitetra 3,304,500,117 2,258,692,000 (68%) Leach et al. (2014)
group 1 and group 5
SRP029372 Grain tissue-specific developmental time course 101,477,759 17,525,439 (17%) Li et al. (2013)
SRP038912 Comparison of stamen, pistil, and pistilloidy 217,315,378 153,009,134 (70%) Yang et al. (2015)
expression
SRP041017 Stripe rust and powdery mildew infection 395,463,786 272,228,560 (69%) Zhang et al. (2014)
time course
SRP041022 Developmental time course of synthetic hexaploid 134,641,113 84,583,556 (63%) Li et al. (2014)
ERP0O08767 Grain tissue—specific expression at 12 DPA 45,213,827 26,420,708 (58%) Pearce et al. (2015)
SRP045409 Drought and heat stress time course in seedlings 921,578,806 533,928,182 (58%) Liu et al. (2015)
ERP004714 Developmental time course of cv Chinese Spring 1,536,051,415 1,066,712,760 (69%) Choulet et al. (2014)
SRP056412 Grain developmental time course with the 4A 1,875,916,011 808,809,053 (43%) Barrero et al. (2015)
dormancy quantitative trait locus
2174 Plant Physiol. Vol. 170, 2016

Downloaded from www.plantphysiol.org on May 25, 2016 - Published by www.plant.org
Copyright © 2016 American Society of Plant Biologists. All rights reserved.


http://www.plantphysiol.org/cgi/content/full/pp.15.01667/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.01667/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.01667/DC1
http://www.plantphysiol.org/
http://www.plant.org

expVIP: Flexible Analysis/Visualization of RNA-seq

Figure 2. Similarity of expression profiles between

. samples (columns), with replicate samples aver-
o e [T ol g o o
lines. One thousand randomly selected genes

are represented, one gene per row. Only genes
expressed in at least one sample over 2 tpm were
used. Colors on the dendrogram indicate the tissues
from which samples originate: grain (red), spike
excluding grain (blue), leaves/stem (green), and
roots (gray).

chromosomes 1A, 1B, and 1D between wild-type and and D in roots). Similarly, in nullitetrasomic lines for
nullitetrasomic lines (Fig. 3). In wild-type plants, aver- the homeologue, which was present with two copies (as
age gene expression was quite even between the three in the wild type), expression was 34% of total in shoots
homeologous genomes (36.6%, 30.9%, and 32.5% for A, and 33.8% in roots. In contrast, expression of the

B, and D in shoots and 33.4%, 32.3%, and 34.4% for A, B, homeologue that was deleted in the nullitetrasomic

Figure 3. Expression of genes with three homeologous

D copies on chromosome 1 in nullitetrasomic wheat
Row z-score lines in shoots and roots. Genotypes for chromo-
some 1 are indicated by colored squares: A ge-
nome in green, B genome in blue, and D genome
in purple. Squares listed at bottom (+) indicate
extra copies (tetra); the absence of squares indi-
cates deletion (nulli) of the entire chromosome.

Genotype
+ Ow>
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lines was strongly decreased to 5.9% and 5.3% of total in
shoots and roots, respectively. Expression of the homeo-
logue that was present with four copies (2X the wild type)
rose to 60.1% and 60.9% of total for shoots and roots,
respectively. These results demonstrate that, even in the
extreme case where expression from one homeologue has
been abolished completely by chromosomal deletion,
our pipeline can accurately distinguish from which
homeologue gene expression originated. Analysis of a
manually curated set of 52 tetraploid wheat homeologues
showed that they share 97.3% * 1.2% DNA sequence
identity and that the distance between adjacent variants
decreases exponentially, with an average separation of
approximately 38 bp. This determines that 8% of single-
nucleotide polymorphisms (SNPs) between A and B
genome homeologous are over 100 bp apart (Krasileva
et al., 2013). This would prevent reads containing these
widely spaced SNPs from being unambiguously mapped
to one homeologue, explaining why we observe a resid-
ual level of expression from the deleted chromosome in
the nullitetrasomic lines.

Comparison of kallisto with bowtie2 Combined
with eXpress

Since kallisto is a newly released pseudoalignment
tool for the quantification of RNA-seq data, we com-
pared its performance with a more conventional RNA-
seq quantification pipeline using bowtie2 and eXpress.
We found that kallisto and bowtie2 had very similar
overall alignment rates (62.7% and 63.4%, respectively;
Supplemental Table S1). kallisto identified slightly
more genes as expressed in at least one sample at over 2
tpm: 88,528 compared with the 87,842 genes identified
by bowtie2 + eXpress. As an assessment of accuracy, we
compared their performance using the nullitetrasomic
wheat lines described previously. We found that kallisto
was slightly more accurate than bowtie2 + eXpress: on
average, kallisto assigned 5.6% of total gene expression
to have originated from the deleted chromosome,
whereas bowtie2 + eXpress assigned 7% of total gene
expression (Supplemental Table S3). These results sup-
port the use of kallisto, given its fast running times and
high accuracy (Bray et al., 2015).

Powerful Visualization and Data Integration Platform

expVIP is highly flexible, as it allows the user to
supply metadata to classify samples according to dif-
ferent categories (based on their biological question),
which are then uploaded into the database. The visu-
alization interface allows users to group, filter, sort, and
download their data according to the categories speci-
fied in the metadata. This design provides control over
precise categories to be used in the database, and the
visualization interface will adjust accordingly. For ex-
ample, we classified the expression data at www.
wheat-expression.com by broad and specific categories

2176

for age, tissue, disease/abiotic stress, and variety
(Supplemental Tables S1 and S4). This hierarchical
structure allows users to group data for an initial high-
level assessment and then open up data into specific
samples, analogous to main effects and simple effects
in statistical analyses (Supplemental Table S4). This
structure can be modified as required by users by sim-
ply modifying the metadata input file or by providing a
different nomenclature for classification, such as Plant
Ontology temporal and anatomy accession identifiers
(Avraham et al., 2008). We describe below how this
visualization interface can be used to facilitate research.

Candidate Gene Function Prediction

Fine-mapping frequently results in a candidate gene
list within a defined genetic interval. Understanding
gene expression patterns can help narrow down this list
but typically requires the development of homeologue-
specific quantitative PCR (qPCR) primers, which is
challenging and time consuming in polyploids. Using
the wheat expression browser, we are now able to
rapidly investigate in silico candidate gene expression
patterns.

For example, a physical contig containing seven can-
didate genes for grain preharvest sprouting resistance
was published recently (Barrero et al., 2015). Therefore,
we organized and sorted the data based on the tissue
origin of the RNA-seq sample. We displayed the ex-
pression data for the six candidate genes in this region
with genome annotation either as a heat map (Fig. 4A) or
individual bar graphs (Fig. 4B). We find that one gene is
expressed at very low levels below 2 tpm in all tissues
(Traes_4AL_DD1B27086.2) and that three genes are most
highly expressed in roots (Traes_4AL_9A01E952D.1,
Traes_4AL_1C557F688.1, and Traes_4AL_65DF744B71.3),
with very little expression in the grain, where genes
involved in precocious germination would be ex-
pected. Two closely related genes show expression
solely in the grain: Traes_4AL_BFAB568BF.1 and
Traes_4AL_F99FCB25F.1, with the latter having much
higher expression.

To further define the expression patterns, we dis-
played the age and specific tissue of the samples.
This filtering and dynamic sorting is available in
both heat map and bar graph modes. Focusing on
Traes_4AL_F99FCB25F.1 displayed as a bar graph
(Fig. 5A), we see that this gene is most highly
expressed during the latter stages of grain develop-
ment, consistent with a role in grain dormancy im-
position, and that expression is strongest in whole
grain and mostly absent in seed coat and endosperm
tissues (Fig. 5B), suggesting that expression might
originate from the embryo. The color code of the graph
dynamically alters to reflect the most recent category
selected by the user. The two candidate genes high-
lighted by this analysis (Traes_4AL_BFAB568BF.1 and
Traes_4AL_F99FCB25F.1) were recently shown to act
as positive regulators of dormancy (Barrero et al,
2015).
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Figure 4. A simple search on www.
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Identification of Stable Reference Genes

To compare gene expression levels, a widely used
method is gPCR, which requires stably expressed ref-
erence genes across all samples being compared. The
integrated data available from expVIP allow quick
analysis to identify potential novel reference genes. To
identify reference genes suitable for wheat across di-
verse tissues, developmental stages, and stress and

Plant Physiol. Vol. 170, 2016

disease conditions, we included 321 out of the total 418
wheat samples included at www.wheat-expression.com
(we excluded 97 samples that were from nullitetrasomic
samples to avoid bias against the missing chromosomes
in those samples). We found that 3,170 genes were
expressed at over 2 tpm in all 321 samples. We calculated
the coefficient of variation as a measure of the stabil-
ity of expression across all samples. These varied from
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32.7% for the most stable gene to 318% for the least stable
gene, with the median coefficient of variation being
61.6% (Fig. 6A; Supplemental Table S5). We investigated
whether genes commonly used as reference genes in
qPCR were stably expressed in our samples. We found
that 1,736 genes were more stably expressed than 13
commonly used reference genes (Yan et al., 2003; Tenea
et al., 2011; Qi et al,, 2012; Fig. 6A; Supplemental Table
56), seven of which were not expressed in all samples at
over 2 tpm (Fig. 6A). We selected the 20 most stable
genes (Fig. 6B) and found a much narrower range of
variation in expression levels compared with the com-
monly used reference genes (Fig. 6C). These stably
expressed genes had a range of different functions, in-
cluding ubiquitin-mediated protein degradation, DNA
binding, and signal transduction (Table III).

To test whether these newly identified stable genes
could be used in qPCR as reference genes, we designed
homeologue-specific primers for five genes. The effi-
ciencies ranged from 93.3% to 97.1% (Table IV). To test
the stability of these primers, we extracted RNA and
synthesized complementary DNA (cDNA) from a di-
verse range of 30 conditions (Supplemental Table S7),
including various tissues, developmental stages, vari-
eties, and disease/stress conditions. We found that all
five genes had low coefficients of variation using qPCR
(4.4%-8.4%), suggesting that they are suitable for use as
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reference genes (Table IV). We found that the coeffi-
cients of variation measured by qPCR were lower than
those found by RNA-seq analysis. This may be due to
the qPCR using a smaller panel of samples (30 condi-
tions) compared with the 321 samples included in the
RNA-seq analysis. Furthermore, the qPCR analysis
used more homogeneous sample extraction methods
than the RNA-seq samples, which were from a diverse
range of studies carried out in different laboratories,
which might have introduced extra variability.

The five novel genes tested had equivalent stability to
five of the most stable commonly used reference genes
across the 30 conditions tested (6.8% = 1.7% and 6.4% =
1.4%, respectively; Supplemental Table S8). The com-
monly used reference genes were originally identified
in flag leaves (Tenea et al., 2011) and had lower coeffi-
cients of variation (3% * 1%) than the novel genes
(5.5% = 2.3%) in this tissue. However, in the grain, the
novel reference genes had much lower coefficients of
variation (2.7% = 0.5%) than the commonly used ref-
erence genes (6.6% = 2.5%), indicating that, under
specific sets of conditions, these novel reference genes
outperform current reference genes. The strong stability
in grain samples may reflect the origin of samples used
to identify the novel reference genes: 147 out of the 321
samples used originated from grains. These results in-
dicate that the expVIP platform can help to identify
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stably expressed genes for use in qPCR, which can
be tailored to individual needs either across different
tissues or focusing on a particular tissue of interest.

Comparative Analyses to Generate Novel Biological Insights

expVIP allows easy integration of data for differential
gene expression analysis. Using the output from kallisto,
we used its companion tool sleuth (Pimentel et al., 2015)
to identify genes that were differentially expressed in
disease and stress conditions compared with control
conditions. For this analysis, we included all samples
from seedling stage wheat leaves that had replicates.

Plant Physiol. Vol. 170, 2016
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Figure 6. Stability of gene expression between
samples. A, Coefficient of variation for genes that
are expressed at over 2 tpm in all samples. Com-
monly used reference genes are indicated by
crosses (x), and reference genes in red are not
expressed at over 2 tpm in all samples. B and C,
Expression of the 20 most stably expressed genes
(B) and 13 commonly used reference genes (C)
across 321 wheat samples belonging to 16 studies
indicated on the x axis. The expression level of
each gene in a sample is relative to the average
expression level of this gene across all samples.
Abbreviations are as follows: elongation factor
1-B (EF1b), eukaryotic translation initiation fac-
tor 4B (EIF4B), cylophilin A (CYP18-2), and
glyceraldehyde 3-phosphate dehydrogenase
(GAPDH).
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These included two different SRA studies, which com-
prised samples from 12 different conditions (Table V; for
details, see Supplemental Table S1).

In order to find genes that are differentially expressed
in multiple conditions, we used a relaxed threshold to
identify differentially expressed genes (g < 0.05). In
total, 53% of genes (54,207 genes) were differentially
expressed in at least one stress condition compared
with the control. The number of differentially expressed
genes varied from 2,018 genes after 48 h of stripe rust
infection to 34,221 genes after 6 h of combined drought
and heat stress (Fig. 7A). In general, the abiotic stresses
caused more genes to be differentially expressed than
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Table Ill. Twenty most stably expressed genes across all 321 wheat samples

Mean Expression

Coefficient

Ensembl Transcript Identifier Level (tpm) of Variation (%) Putative Function®
Traes_1DS_18F13A3DD.1 13 33 RING zinc finger domain superfamily protein
Traes_5AS_019ECA143.1° 13 33 lon channel
Traes_7BL_46880A4FE.1 8 33 Ser/Thr protein kinase
Traes_6DS_4092ABCFB.1 7 34 Uncharacterized protein
Traes_6DS_BE8B5E56D.1° 24 34 Ser/Thr protein kinase
Traes_6AS_90A5682D3.1 21 34 Ser/Thr protein kinase
Traes_1AL_968B97E50.1° 15 34 ATP-dependent zinc metalloprotease FTSH8
Traes_2AS_C407071E4.2 9 34 WRKY family transcription factor family protein
Traes_4BS_F96B8575F.1 6 34 Uncharacterized protein
Traes_4DL_A3860F7BD.1 9 35 DEAD box ATP-dependent RNA helicase38
Traes_1BL_0CB993ADF.2 10 35 VHS and GAT domain-containing protein
Traes_7DL_DAC78932E.1 9 35 DGCR14-related
Traes_7DL_21CCF6E42.2 9 35 GClP-interacting family protein
TRAES3BF019300030CFD_t1 14 35 Uncharacterized protein
Traes_1BL_5FFF3DBA5.1 15 35 Ubiquitin family protein
Traes_5DL_4A0A6443E.1 12 35 Uncharacterized protein
Traes_4AL_8CEA69D2E.1" 31 35 Ubiquitin-conjugating enzyme
Traes_7AL_EA6F4FFDE.2 13 35 Zinc ﬁnger protein
Traes_4BS_4AD56C4F8.2° 13 36 Uncharacterized protein
Traes_5BL_6E4024365.1 9 36 Gal oxidase/Kelch repeat superfamily protein

“For genes that were not annotated in wheat, putative functions were assigned by orthology to rice, maize, and Arabidopsis genes according to

EnsemblPlants.
PGene stability tested by qPCR.

under disease conditions (on average, 27,212 compared
with 6,429 genes), and in abiotic stress, more genes
were up-regulated than down-regulated, whereas the
reverse pattern was observed in disease conditions.
We found that the majority of genes were differen-
tially expressed in multiple conditions (Fig. 7B), indi-
cating that transcriptional responses to different
stresses are shared. Comparing between abiotic and
disease stress, we found that 38% (20,553 genes) of
differentially expressed genes were found in both cases.
We detected enrichment for 32 Gene Ontology (GO)
terms among the genes differentially expressed in 10 or
more abiotic and disease conditions (false discovery
rate [FDR] < 0.05; Supplemental Tables S9 and S10).
Nineteen of these related to biological processes rather

than molecular function or cellular compartment (Table
VI). The two most strongly enriched GO terms
(GO:0018298 and GO:0009765) were related to chloro-
phyll a/b-binding proteins, whereas the third most
strongly enriched GO term (GO:0006457; protein folding)
included three HSP90 family heat shock proteins, three
calreticulin/calnexin proteins, and three cyclophilin-type
peptidyl-prolyl cis-trans-isomerase domain-containing
proteins. Evidence was also found for the regulation of
gene expression, and 14 transcription factors were dif-
ferentially expressed across 10 or more conditions, in-
cluding members of the NAC, MYB, basic-Leu zipper,
zinc finger, and AP2/ERF families. Many of these large
gene families have been shown in plants to be involved in
abiotic and biotic stress responses (Singh et al., 2002;

Table IV. Homeologue-specific primers designed for five of the most stably expressed genes identified from 321 wheat samples

The stability of the expression of these five genes was tested across 30 independent conditions, including different tissues, developmental stages,

varieties, and disease infection (for details, see Supplemental Table S7).

Ensembl Transcript Identifier Primer Sequences (5'-3")

Primer Efficiency (%) Coefficient of Variation (%)

Traes_4AL_8CEA69D2E.1 CGGGCCCGAAGAGAGTCT

ATTAACGAAACCAATCGACGGA

Traes_4BS_4AD56C4F8.2 TCGTTGCTTGAGGAAAATG

CATGACCGTCTTATTTATGGCA
TTTGCACAGTATGTACCAAATGAG 95.0 5.8
TCTTCCAATCAAAACCTCCTCT

TCTAAATGTCCAGGAAGCTGTTA

Traes_TAL_968B97E50.1

Traes_5AS_019ECA143.1
CCTGTGGTGCCCAACTATT
Traes_6DS_BE8B5E56D.1
CTGGATCATTTCCGGTGC

CATGCTCTGGGATTTATCCAT

97.1 7.1

93.7 8.2

96.0 4.4

93.3 8.4
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Table V. Samples used to compare gene expression responses to
abiotic and biotic stresses

Study Age Conditions

SRP041017 7 d

Replicates

Stripe rust, 24 h

Stripe rust, 48 h

Stripe rust, 72 h

Powdery mildew, 24 h
Powdery mildew, 48 h
Powdery mildew, 72 h
Drought stress, 1 h

Drought stress, 6 h

Heat stress, 1 h

Heat stress, 6 h

Drought and heat stress, 1 h
Drought and heat stress, 6 h

w

SRP045409 7d

NN RN DNNDWWWWwWWw

Feller et al., 2011; Nakashima et al., 2012), but this joint
analysis identified precise candidates in wheat based on
available experimental data that can be further charac-
terized.

We identified nine genes that were differentially
expressed in all 12 conditions. Examining the ex-
pression of these genes in the wheat expression
browser gives further insight into their expression
patterns across all 16 studies. For example, the
ortholog of the endosomal targeting BRO1 gene
Traes_2AL_2DFED03C9.2 is strongly up-regulated in
abiotic stress conditions (Fig. 8A, purple bar), and
opening up the data to look into individual stresses,
we find that it is not up-regulated in phosphorous
starvation (Fig. 8B, purple bars labeled P-10d).
Traes_2AL_2DFED03C9.2 is down-regulated in the
majority of disease conditions (Fig. 8B, yellow bars),
except in the spike infected with Fusarium graminearum
(Fig. 8B, yellow bars labeled fu30h—fu50h) and after
6 d of stripe rust infection (Fig. 8B, yellow bars la-
beled sr6+d). This visualization also shows that
Traes_2AL_2DFEDO03C9.2 is expressed in all tissues
(roots, leaves/stems, spikes, and grains) and is not re-
stricted to seedling leaves, the tissue from which it was
identified by our analysis. Selecting the homeologue
option allows the expression of homeologous genes to
be examined side by side (Fig. 8C). In this case, all
three homeologues show a similar pattern of expres-
sion in the various samples, and all three homeologues
are differentially expressed in 11 or 12 abiotic stress
and disease conditions. The expVIP visual interface
also allows individual studies to be selected; in this
case, the two original studies also can be displayed on
their own to visualize the differences identified by
sleuth (Supplemental Fig. 52).

DISCUSSION
Highly Accurate Pipeline

A major challenge in the analysis of RNA-seq data,
particularly in polyploid crop species, is the assignment
of short reads to the correct copy of a gene. Using

Plant Physiol. Vol. 170, 2016
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nullitetrasomic wheat lines, we have shown that kallisto
as implemented through expVIP accurately assigns
reads to the correct homeologue. The visualization in-
terface makes expression data across a wide range of
conditions easily available, enabling researchers and
breeders to rapidly check the expression patterns of in-
dividual homeologues. This will allow a more precise
understanding of gene regulation beyond the broad
general trends usually reported in wheat with non-
homeologue-specific qPCR primers. The ability to
query homeologue-specific expression data will also
complement growing knowledge about sequence di-
versity between homeologues. A recent genome-wide
analysis between landraces and elite varieties sug-
gested that, during domestication, positive selection
was usually restricted to an advantageous mutation
within a single homeologue (Jordan et al., 2015). This
highlights that understanding of homeologue-specific
variation in both sequence and expression will be fun-
damental for future advances in wheat improvement.

Utility for Functional Genomic Research in Wheat

Until recently, marker availability had been a major
constraint in wheat research; however, developments
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Figure 7. Differentially expressed genes (q < 0.05) in abiotic stress and
disease conditions. A, Numbers of up-regulated genes (black bars) and
down-regulated genes (gray bars) in individual stress conditions. D,
Drought; H, heat; DH, drought and heat combined; PM, powdery
mildew; SR, stripe rust. B, Number of genes that are differentially
expressed in multiple abiotic stress and disease conditions.
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Figure 8. Example of gene expression vi-
sualization using expVIP for the gene
Traes_2AL_2DFED03C9.2, with samples
grouped according to their High level
stress-disease (A), Traes 2AL_2DFED03C9.2,
with additional categorization of samples
including lower level Stress-disease and High
level tissue (B), and Traes_2AL_2DFED03C9.2
and its B and D homeologues, which are dif-
ferentially expressed in 11 and 12 abiotic and
disease conditions, respectively (C). The data
shown here include expression data from all
studies, not just the studies examined for dif-
ferential expression. Samples are ordered by
their High level stress-disease status: none
(green), disease (yellow), abiotic (purple), and
transgenic (orange).

>

High level age

study
Age

9]

High level variety
High level Stress-disease
Stress-disease

High level tissue
Variety

Tissue

none (n=343)
disease (n=53)
abiotic (n=18)
transgenic (n=4)

roots, none, none (n=66)
leaves/shoots, none, none (n=85)
spike, none, mo30h (n=15)

spike, none, mo50h (n=15)

grain, none, none (n=147)

spike, none, none (n=15)

spike, disease, fu50h (n=15)

spike, disease, fu30h (n=15)
leaves/shoots, sréed (n=1)
leaves/shoots,

leaves/shoots,

leaves/shoots,

leaves/shoots, disease,

leaves/shoots, disease, pm72h (n=3)

roots, abiotic, P-10d (n=3)

leaves/shaots, abiotic, P-10d (n=3)

leaves/shoots, abiotic, ds1h (n=2)

hoots, abiotic, dséh (n=2)
ves/shoots, abiotic, hslh (n=2)

leaves/shoots, abiotic, hséh (n=2)

leaves/shoots, abiotic, dhs1h (n=2)

leaves/shoots, abiotic, dhséh (n=2)

leaves/shoots, transgenic, GPC RNAI (n=4)

roots, none, none (n=66)
leaves/shoots, none, none (n=85)
spike, none, mo30h (n=15
spike, none, mo50h (n=15)
grain, none, none (n=147)
spike, none, none (n=15)
, fuSOh (n=15)

=15)

eaves/shoots,
eaves/shaots,
leaves/shoots, , pm24h (n=3)
leaves/shoots, se, pmd8h (n=3)
leaves/shoots, disease, pm72h (n=3)

roots, abiotic, P-10d (n=3)

leaves/shoots, abiotic, P-10d (n=3)
leaves/shoots, abiotic, ds1h (n=2}
leaves/shoots, abiotic, dséh (n=2)
leaves/shoots, abiotic, hslh (n=2)
leaves/shoots, abiotic, hséh (n=2)
leaves/shaots, abiotic, dhs1h (n=2)
leaves/shoots, abiotic, dhséh (n=2)
leaves/shoots, transgenic, GPC RNAI (n=4)

Traes 2AL_2DFED .2

0

Traes 2AL 2DFED03C9.2 Traes_2BL_7141904F2.1

40

Traes_2D1._39A6CF612.1

in SNP- and sequence-based genotyping have removed
these limitations (Borrill et al., 2015). The focus has now
shifted toward the understanding of gene function,
which is being accelerated by the availability of a
draft reference genome (International Wheat Genome
Sequencing Consortium, 2014) and next-generation
sequencing-enabled mapping approaches (Ramirez-
Gonzalez et al., 2015). The availability of a compre-
hensive gene expression visualization platform in
wheat will facilitate the functional characterization of
genes by providing researchers with information re-
garding where they might be acting. We have demon-
strated that the expression browser rapidly delivers
information about tissue-specific expression patterns
and can help narrow down candidate genes within
mapping intervals through both heat-map and single-
gene analyses. Furthermore, we have used these data to
propose genes with high stability across a wide range of
conditions that might represent better reference genes
for qPCR than those traditionally used, particularly in
grains.
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Opportunities for Meta-Analysis

Using the data generated by expVIP for wheat, we
compared between samples from a diverse range of
abiotic stress and disease conditions, leveraging the
unified analysis platform. We found that slightly more
genes were up-regulated than down-regulated in abiotic
stresses, whereas in disease conditions, the opposite
pattern was observed: this contrasts with a previous
meta-analysis of rice abiotic and biotic stress microarray
experiments, where 60% of differentially express genes
were down-regulated under abiotic stress and 60% of
differentially expressed genes were up-regulated under
biotic stress (Shaik and Ramakrishna, 2014). These re-
sults may be different because the rice analysis included
additional stress conditions that might have influenced
overall trends, microarrays having an incomplete gene
complement, or biological differences between species.
expVIP will facilitate the meta-analysis of RNA-seq ex-
periments, which has been difficult so far due to non-
unified methods of analysis, in contrast to microarray
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Table VI. Enriched biological processes in genes differentially expressed in 10 or more abiotic and disease conditions

Percentage
of Differentially Percentage
GO Accession No. Term Expressed Genes of Transcriptome FDR
GO:0018298 Protein-chromophore linkage 4.0 0.1 3.00E-09
G0:0009765 Photosynthesis, light harvesting 4.0 0.2 5.20E-05
GO:0006457 Protein folding 5.2 0.7 0.0011
GO:0009651 Response to salt stress 2.9 0.2 0.0041
GO:0006970 Response to osmotic stress 2.9 0.2 0.0066
GO:0065007 Biological regulation 17.8 8.2 0.014
GO:0065008 Regulation of biological quality 5.7 1.5 0.034
GO:0045449 Regulation of transcription 10.3 4.1 0.041
G0:0009889 Regulation of biosynthetic process 10.3 43 0.044
GO:0010556 Regulation of macromolecule biosynthetic process 10.3 43 0.044
GO0:0031326 Regulation of cellular biosynthetic process 10.3 4.3 0.044
GO:0019219 Regulation of nucleobase, nucleoside, nucleotide, 10.3 4.3 0.044
and nucleic acid metabolic process

GO:0051171 Regulation of nitrogen compound metabolic process 10.3 43 0.044
GO:0080090 Regulation of primary metabolic process 10.3 4.5 0.048
GO:0006355 Regulation of transcription, DNA dependent 9.8 4.1 0.048
GO:0030001 Metal ion transport 4.0 0.9 0.048
GO:0051252 Regulation of RNA metabolic process 9.8 4.1 0.048
GO:0009628 Response to abiotic stimulus 4.6 1.2 0.048
GO:0010468 Regulation of gene expression 10.3 4.5 0.048

experiments, which have been better catalogued and
compared (Zimmermann et al., 2004; Parkinson et al,,
2007; Wagner et al., 2013). Although differences were
seen between abiotic and disease transcriptional re-
sponses, 38% of differentially expressed genes were
identified in both abiotic and disease conditions, which
is similar to the proportion identified in a comparison of
gene expression in rice of drought and bacterial re-
sponses (39% shared genes; Shaik and Ramakrishna,
2013).

The majority of genes differentially expressed in 10 or
more stress conditions did not show the same direction
of expression change in all stresses. For example, three
homeologues of an endosome-targeting BRO1 gene
(Traes_2AL_2DFEDO03C9.2, Traes_2BL_7141904F2.1,
and Traes_2DL _39A6CF612.1) were up-regulated in
abiotic stresses and down-regulated in disease condi-
tions. Manipulating endosomal trafficking by over-
expressing a RAB5 GTPase in Arabidopsis (Arabidopsis
thaliana) enhanced salt-stress tolerance (Ebine et al.,
2012), and endocytic trafficking is also known to be
important for disease resistance (Teh and Hofius, 2014),
indicating that BROI represents a candidate gene
to manipulate abiotic stress and disease responses.
Several transcription factors from diverse families
are also up- and down-regulated in stress condi-
tions; for example, the NAC transcription factor
Traes_5BL_4497A137C.1 is up-regulated in response to
abiotic stress and during early stripe rust infection but
down-regulated later during stripe rust and powdery
mildew infection. Analogously, the basic helix-loop-helix
(bHLH) transcription factor Traes_5DL_2A286B481.1 is
up-regulated during the first 1 h of drought, heat, and
drought combined with heat stress, but after 6 h in all
three conditions it is down-regulated, suggesting a
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specific temporal role. In Arabidopsis, bHLH92, the
ortholog of Traes_5DL_2A286B481.1, is also induced by
abiotic stresses, but its up-regulation is maintained at
both 6 and 24 h (Jiang et al., 2009). The ability to com-
bine studies from multiple environmental conditions
will allow novel hypothesis generation to deepen our
understanding of conserved and divergent responses to
abiotic and biotic stresses.

Application to a Range of Species

We demonstrate that expVIP can be used to reanalyze
studies using a common reference, allowing accurate
and easy comparison between data from different
sources. We applied our pipeline to polyploid wheat and
generated an open-access expression browser (www.
wheat-expression.com). However, the expVIP pipeline
and browser interface can be implemented readily into
other species to facilitate functional gene characteriza-
tion. This is especially relevant given the speed with
which genomics is progressing: the best reference ge-
nomes and transcriptomes change constantly, making it
difficult to compare between RNA-seq studies that have
used different references. This problem is also exempli-
fied in more mature systems such as rice, where two
different genome annotations are widely used: Rice
Annotation Project gene models and Michigan State
University gene models (Ohyanagi et al., 2006, Ouyang
et al., 2007). Although these annotations share many
similar genes, they cannot be compared directly. expVIP
facilitates the rapid reanalysis of data sets that were
originally evaluated with different reference sequences
to enable such comparisons on a common set of gene
models (Supplemental Text S2).
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The flexible expVIP metadata structure can accommo-
date formal ontologies such as Plant Ontology accession
identifiers, which can be linked through established
parent-child relationships. This is immediately possible for
the temporal and anatomical components of ontologies
that are well described and documented (Avraham et al.,
2008). However, although ontologies for stress treatments
(abiotic and biotic) have been proposed (Walls et al., 2012),
they are not commonly implemented. Looking forward,
the use of a common platform such as expVIP to analyze
RNA-seq data from multiple species will facilitate cross-
species comparisons of gene expression between orthologs.
Orthologous relationships between genes for multiple
plant species are well established (Rouard et al., 2011;
Goodstein et al., 2012; Bolser et al., 2015), and they will
become increasingly precise as additional genomes are
sequenced. This would allow the inclusion of an additional
species category within the visualization interface to com-
pare the expression of orthologs across multiple species.
However, this will require the research community to im-
prove and engage more actively with the use of ontologies
to describe the origin of diverse RNA-seq samples.

The availability of expVIP as a virtual machine
will facilitate its application to any species with a
transcriptome reference. expVIP is based on the light-
weight pseudoaligner kallisto (which we have shown
to perform as well if not more accurately that bowtie2 +
eXpress), which will allow rapid analysis on a desktop
machine without the need for bioinformatics infra-
structure. This opens up intuitive and interactive data
visualization of gene expression data to researchers
using both unpublished and publicly available data.

CONCLUSION

The pipeline and visualization interface we have de-
veloped will open up the analysis of gene expression data
from a wide variety of species to researchers and breeders.
Our application to wheat gene expression data provides a
community resource that will aid the functional analysis
of wheat genes for their use in research and breeding
programs. Moving into the future, the volume of RNA-
seq expression data will only increase, and the value from
reanalysis and integration of data cannot be under-
estimated. This is especially relevant given the frequent
release of improved reference genomes, which, while
welcomed, poses a challenge when comparing RNA-seq
data that have been aligned to previous releases. This
open-access platform makes a first step toward enabling
the easy integration, visualization, and comparison of
RNA-seq data across experiments.

MATERIALS AND METHODS
Data Preparation
Reads

We downloaded the wheat (Triticum aestivum) gene expression data from the
SRA database at NCBI available on August 12, 2015. Study ERP004714 was
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incomplete and missing the required metadata in the SRA, so the data were
downloaded directly from https://urgi.versailles.inra.fr/files/RNASeqWheat/ .
For consistency of analysis, we only included data sets generated using RNA-seq
on the [llumina platform, both paired and single-end reads. We excluded small
RNA studies and studies with fewer than 50 million total reads. The SRA studies
included in this analysis are listed in Table I with a short description (full details
are given in Supplemental Table S1).

Reference

The wheat transcriptome reference was downloaded from EnsemblPlants
release 26 (Choulet et al, 2014; International Wheat Genome Sequencing
Consortium, 2014).

Metadata

Experiment metadata were downloaded from the SRA and supplemented by
manual curation from the associated publications. This manual curation was
used to define the factors that were used for the classification of studies in the
visualization interface. For the wheat expression browser, we defined factors as
study, age, tissue, variety, and stress-disease treatment. These factors were
grouped at a high level and also at the individual level to allow more meaningful
comparisons (Supplemental Table S4). The homeologues of each gene were
extracted from EnsemblCompara release 26 (Vilella et al., 2009) and added as
metadata to the genes. Detailed documentation on how to load metadata into
expVIP is available online (https:/ / github.com/homonecloco/expvip-web /wiki).

Expression Analysis

We implemented an initial sample quality control using fastQC (version
0.10.1; Andrews, 2010), which reports the fastQC quality files for the user to
assess. Wheat gene expression quantification was carried out using kallisto
version 0.42.3 (Bray et al., 2015) and the wheat transcriptome described pre-
viously. For paired-end reads, kallisto was run using default parameters with
100 bootstraps (-b 100). For single-end reads, kallisto was run using 100 boot-
straps (-b 100) in the single-end read mode (-single), and the average fragment
length used was 150 bp (-1 150) with an sp of 50 (-s 50); these values were taken
as an average of reported fragment lengths for the studies included. For com-
parison, a more traditional analysis (not included in expVIP) was carried out
where reads were aligned to the IWGSC transcriptome version 2.26 using
bowtie2 (version 2.2.4) using the parameters recommended by eXpress (Roberts
and Pachter, 2013): output in sam format (-S), maximum insert size of 800 bp
(-X 800), and unlimited multimappings (-a). Counts per gene and tpm were
calculated using eXpress version 1.5.1 using the default parameters except that
sequence-specific biases were ignored (-no-bias-correct) due to some samples
having too few fragments to accurately learn bias parameters, so the bias correc-
tion was turned off for all samples to maintain a uniform treatment across samples.

Differential gene expression analysis was carried out on the kallisto output
abundance files using sleuth (Pimentel et al., 2015). Default settings were used,
except that the maximum bootstraps considered was 30 (max_bootstrap = 30).
For the integrated disease and stress analysis, each sample was compared with
the control sample from the study from which it originated. Genes with an FDR-
adjusted P () < 0.05 were considered differentially expressed.

Visualization Interface

The outputs from kallisto were merged into two separate files: the raw es-
timated counts and tpm for all samples. Those files were loaded into an MySQL
5.5 relational database along with a Web server using the framework Ruby on
Rails 4.2. expVIP is released as a Biogem (Bonnal et al., 2012). The visualization
of the expression is implemented as a Bio]S (Corpas et al., 2014) component,
using the Web development frameworks D3v3, jQuery 2.1, and jQuery-UI 1.11.

Availability of expVIP

The source code to prepare and set up the expVIP database and graphical
interface are available in Github: https://github.com/homonecloco/expvip-
web. The Bio]S component to visualize the expression data are available at
the Bio]S registry: http:/ /biojs.io/d/bio-vis-expression-bar. The expVIP vir-
tual machine, the data displayed in the Web interface, and the detailed docu-
mentation are available on the wiki page https:/ / github.com /homonecloco/
expvip-web/wiki.
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qPCR Analysis of Reference Gene Stability

Tissue samples were collected in liquid nitrogen for a range of tissues, de-
velopmental stages, varieties, and disease conditions (Supplemental Table S7).
All plants were grown in greenhouses in soil under 16-h-light/8-h-dark, 20°C
day/12°C night conditions, except cv Maris Huntsman seedlings, which were
grown on moist filter paper in petri dishes in the dark at 20°C. Frozen samples
were ground to a fine powder, and RNA was extracted using TRI Reagent
(Sigma) according to the manufacturer’s instructions, except for grain samples,
which were extracted according to a phenol-based method (Box et al., 2011)
with the addition of 20% (v/v) Plant RNA Isolation Aid (Ambion) to the RNA
extraction buffer. RNA samples were diluted to 250 ng uL ", treated with RQ1
DNase (Promega), and reverse transcribed using Moloney murine leukemia
virus (Invitrogen) according to the manufacturer’s instructions. qPCR was
carried out using LightCycler 480 SYBR Green I Master Mix (Roche) with each
primer at a final concentration of 0.25 um and 0.05 uL of cDNA in a 10-uL re-
action using 384-well plates. The qPCR program run on the LightCycler 480
(Roche) was as follows: preincubation at 95°C for 5 min; 45 amplification cycles
of 95°C for 10 s, 58°C for 10 s, and 72°C for 20 s with the final melt-curve step
cooling to 60°C and then heating to 97°C with five reads per 1°C as the temper-
ature increased. For all sample/primer combinations, melt curves were inspected
to have only a single product. Crossing thresholds were calculated using the
second derivative method provided in the LightCycler 480 SW 1.5 software
(Roche). Primer efficiencies were calculated using a serial dilution of cDNA.

Analysis of GO Term Enrichment

GO term enrichment was calculated using Singular Enrichment Analysis
provided by agriGO (Du et al., 2010) using default settings. The genes differentially
expressed in 10, 11, and 12 abiotic and disease conditions were supplied as the
query list, along with GO terms downloaded from EnsemblPlants biomart (release
26). The entire INGSC version 2.26 transcriptome was used as the reference using
GO terms downloaded from EnsemblPlants biomart.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Comparison of the number of genes expressed
per sample and the number of mapped reads.

Supplemental Figure S2. Demonstration of filtering within the expVIP
interface.

Supplemental Table S1. Detailed wheat metadata per sample.

Supplemental Table S2. Ten most highly expressed genes in wheat grain
and leaf tissues.

Supplemental Table S3. Comparison of the accuracy of kallisto and
bowtie2 using nullitetrasomic wheat lines.

Supplemental Table S4. Structure of wheat RNA-seq metadata for www.
wheat-expression.com.

Supplemental Table S5. Means, sp, and covariance of transcript expression
across 321 wheat samples.

Supplemental Table S6. Stability of reference gene expression across 321
wheat samples.

Supplemental Table S7. Samples used to test the stability of expression of
qPCR primers.

Supplemental Table S8. Comparison of coefficients of variation between
five novel reference genes and five commonly used reference genes
across 30 conditions.

Supplemental Table S9. GO term enrichment among genes expressed
under stress and disease conditions.

Supplemental Table S10. Genes differentially expressed in 10 stress
conditions, fold change, and function.

Supplemental Text S1. Tutorial for expVIP graphic interface (Wheat Ex-
pression Browser example).

Supplemental Text S2. Application of expVIP to rice allows the integration
of previous studies.
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Supplemental tables

Tissue Ensembl transcript ID Average expression (tpm) Function

grain Traes_5BS_FDE980DE1.1 5,808 Grain softness protein

grain  TRAES3BF027700070CFD_t1 6,898 Serine protease inhibitor (annotation of orthologue)

grain Traes_3DS_D718FF51C1.2 7,042 Alpha-amylase inhibitor 0.19

grain Traes_1AS_8FADG6A69F.1 9,155 unknown

grain Traes_1DS_67B7153A8.1 10,350 Glutenin (annotation of orthologue)

grain Traes_1DS_66B67E9B41.2 20,423 Glutenin (annotation of orthologue)

grain Traes_4AL_661613B77.1 63,949 Alpha/beta-gliadin MM1

grain Traes_4AL_4FF5B8837.1 70,002 Alpha/beta-gliadin A-I

grain Traes_5BL_E68C461B3.1 77,505 Alpha/beta-gliadin (annotation of orthologue)

grain Traes_1DL_D861501F5.1 96,186 Glutenin, high molecular weight subunit 12
leaf Traes_4DL_7CF374FEE.1 4,518 Ribulose bisphosphate carboxylase large chain (annotation of orthologue)
leaf Traes_3DS_4EFODAA39.1 4,794 Photosystem | reaction center subunit XI (annotation of orthologue)
leaf Traes_3DL B80EC2366.1 6,041 putative nontranslating CDS
leaf TRAES3BF032400040CFD_t1 6,402 unknown
leaf Traes_4DL_85C90C56C.2 7,058 Ribulose bisphosphate carboxylase large chain
leaf TRAES3BF011000020CFD_t1 7,785 Histidine kinase 3 (annotation of orthologue)
leaf Traes_6BL _5979B5341.1 10,819 unknown
leaf TRAES3BF007300450CFD_t1 12,421 unknown
leaf TRAES3BF007300320CFD_t1 21,923 unknown
leaf Traes_7DS_037CD9FCA.1 23,120 unknown

Table S2. Ten most highly expressed genes in wheat grain and leaf tissues from seven and nine independent studies, respectively.



Shoots Roots
euploid N1AT1B N1AT1D N1BT1A N1BT1D N1DT1A N1DT1B euploid N1AT1B N1AT1D N1BT1A N1BT1D N1DT1A N1DT1B
Average gene | 14 16.5 3.0 36| 420| 195 326 | 226 207 36 47| 429| 240| 388| 220
expression g 140 | 313 16.8 3.0 3.2 166 | 320| 200 402 20.9 24 3.2 204 | 394
level in shoots
forgenes | 1D 147 | 172 297 | 187| 291 3.1 34| 213| 239| 393| 255| 457 34 41
o located on 1A+
k] chromsome | 1B+
e (tpm): 1D 452 | 515 500 | 637| 519 523| 580| 621| 67.7| 648| 708| 73.0| 625| 655
Percentage of | 1p 36.6% | 5.8% | 7.3% | 66.0% | 37.6% | 62.4% | 39.0% | 33.4% | 53% | 7.2% | 60.5% | 32.9% | 62.0% | 33.6%
o pgreer;seion 18 309% | 60.7% | 33.5% | 47% | 63%| 31.7% | 55.2% | 32.3% | 59.3% | 32.2% | 3.4% | 44% | 32.6% | 60.2%
originating
from: 1D 32.5% | 33.5% | 59.3% | 29.3% | 56.1% | 509% | 5.8% | 34.4% | 354% | 60.6% | 36.0% | 62.7% | 54% | 6.2%
Average gene | 1 9.1 2.2 24| 205 11.0 168 | 115| 135 2.7 34| 263 14.9 240 | 139
expression g 74| 153 8.2 18 2.0 8.6 158 | 13.0| 247 132 24 2.6 129 | 246
level in shoots
8| forgenes | 1D 7.6 8.6 14.8 8.9 14.7 1.9 19| 138| 152 243 | 160| 281 2.7 3.2
>=<t- located on 1A+
_“: chromsome 1B+
N (tpm): 1D 21| 261 254 | 311| 277 274| 292| 402| 427| 408| 447| 456| 396| 418
£ | Percentage of | 1p 37.8% | 85% | 9.4% | 65.7% | 39.6% | 61.5% | 39.4% | 33.6% | 6.4% | 83% | 58.8% | 32.6% | 60.6% | 33.4%
(=]
s pgri';;on 18 30.7% | 585% | 32.3% | 5.8% | 7.2% | 31.5% | 54.1% | 32.2% | 580% | 323% | 53% | 57%| 32.7% | 58.9%
originating
from: 1D 31.5% | 33.0% | 583% | 285% | 53.2% | 7.0% | 65% | 342% | 35.7% | 59.5% | 35.8% | 61.7% | 6.7% | 7.7%

Table S3. Comparison of accuracy for two methods of read alignment and quantification. Reads from nullitetrasomic wheat lines were aligned
and quantified using the pseudo aligner and quantifier kallisto (upper part of table) or the conventional aligner bowtie2 combined with
eXpress for quantification (lower part of table). Gene expression on chromosome group 1 (the chromosome group for which whole
chromosomes were added or deleted in these lines) was compared to assess accuracy of alignment and quantification.



This tutorial is based on the Wheat Expression Browser . However, the principles are the same for any transcriptome study
which is powered by the expVIP graphical interface.

Home Page

The home page allows the user to insert a gene name to search and to define which studies are to be included in the
visualisation interface. By default all studies are selected, but users can select/deselect a study by simply clicking on the
specific button.

You can also compare expression between two genes by introducing both gene names in the boxes and pressing the
Compare button.

Alternatively you can compare expression across multiple genes (up to 50) to generate a heatmap. You can add a list of
genes separate by commas or one gene per line in the Multiple genes box.

All gene names are based on the transcriptome reference used for expVIP: for the case of the Wheat Expression Browser we
used the IWGSC transcriptome available through Ensembl Plants release 26.

Visualisation interface

Single gene or two-gene comparison

Once the gene expression loads the page includes several features. These are shown below and explained point by point:
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Figure 1: Overall description of features on Wheat Expression Browser

1. Search box : at any point you can type or copy a new gene name (based on Ensembl Plants nomenclature) and
generate a new set of expression data.

2. Compare box :you can type a second gene name and press the Compare button to generate two expression graphs
drawn at the same scale.

3. Menu options : this includes a series of links to different options:

o Home : return to home screen.

Studies : opens up a popup screen with a summary and short description of each study and a link to manuscript.

o

Download : link to download all the wheat expression database including tpm and counts and associated
metadata.

[o]

o Add your data : link to GitHub to download virtual machine.
o Tutorials :link to Wheat Expression Browser Tutorial.

o Videos : link to Wheat Expression Browser Video Tutorial.

4. Gene : shows the gene which is currently being displayed with link to Ensembl Plants gene page.

5. Expression unit : allows user to select the expression unit used to visualise the expression data. This can be either
“transcript per million ( tpm)” or “estimated counts ( counts )”. We have not provided RPKM given the inconsistencies
generated across samples when using this measure. A detailed discussion can be found in Wagner et al (2012). It is


http://www.ncbi.nlm.nih.gov/pubmed/22872506

10.

11.

important to mention that tpm is preferred over RPKM since it allows an easier comparison for abundances between
samples. However it is important to stress that while tpm serves as a relative measure to compare genes across
experiments, a proper normalisation and statistical analysis with differential gene expression programs must be
performed. expVIP generates outputs which allow easy implementation of sleuth, DESeq and EdgeR.

Save graph : these two buttons allow users to save the current graphs in either SVG (to work on Adobe llustrator) or as
PNG files. The graphical file will render based on the current selection and order of factors as displayed on the screen.

Save data : this allows the user to download a csv file with the data based on the current selection and order of factors
as displayed on the screen. The data will include the standard errors and the number of samples that make up each

value.

Homoeologues : by clicking on this button, the Wheat Expression Browser will display the expression graphs of
known homoeologues of the original primary gene. This gene name will remain in bold and the homoeologous graphs will
be displayed according to A, B, D genome ordering. When homoeologues are displayed the same expression scale is
used across graphs and the sorting and filtering of factors is simultaneous to allow easier comparison.

Gene names : gene name for corresponding graph. When homoeologues are shown the original gene used for the
search is shown in bold.

Expression level :the expression level adjusts according to the expression of each set of gene homoeologues. The
scale remains consistent across homoeologues to allow easier comparison. The values are based on the unit selected in
the expression unit box (see point 5 above).
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Figure 2: Overall description of features on Wheat Expression Browser (continued)

Filter : This feature open a pop-up window which reveals all the levels within the particular category. All levels are pre-
selected, but users can choose to display specific levels by selecting or deselecting them accordingly. If a level is



12.

13.

14.

15.

16.

17.

18.

19.

deselected, then the data associated with this factor is removed from the graph. Within the pop-up window levels can
also be re-arranged according to the user’s preference by dragging the level to the specific position within the pop-up
window (see Features section below).

Display/hide category : Each individual category can be displayed or hidden by pressing the +/- button. When a
category is displayed, the expression graphs will re-arrange according to the new category which has been introduced. If
a category is hidden, then the graphs will also adjust accordingly. Data is not removed when doing this, rather it is
grouped within the categories selected such that the total samples displayed remains the same. The colours within the
category correspond to unique values or levels (up to 24 different colours) and are also used in the bar graphs
corresponding to the expression data.

Expression bars : These bars represent the expression level of the “n” samples which are grouped according to the
factors chosen based on the selection criteria (11 and 12 above). When hovering over the bar with the mouse a small
tooltip will indicate the expression level ( tpm or counts ) and the standard error (sem) used for the error bars (see 14)

Error bars : Standard error of the means for the “n” expression values on which the bar graph is based.

Factors : Coloured rectangles represent the categories which are displayed according to the factors chosen based on
the selection criteria (11 and 12 above). When hovering above the rectangles a tooltip will appear to show the long name
of the level being examined.

Description : Text description of the factors chosen based on the selection criteria (11 and 12 above) and the number
of RNAseq samples (n) which meet this specific criterion.

Multiple gene comparisons

Expression unit : For heatmaps, log2(tpm) is suggested as the expression unit as this provides better resolution to
compare multiple genes across several categories.

Heatmap : Expression data is represented as a heatmap. As for single genes, categories can be sorted and filtered using
the same tools. Gene names appear on the top of each column. Currently, up to 50 genes can be visualised in one
heatmap. In Figure 3, for example, the two right-most genes are expressed solely in grains, with one being expressed to
higher levels as suggested by the dark blue colour.

Scale : Colour scale for the expression values in the heatmap. The values adjust according to the highest tpm value
being displayed within the current heatmap visualisation. Since tpm values below 2 are considered as very low
expressed genes and log2 values of tpm<1 result in negative expression values, we forced tpm values below 1 to have a
log2 value of cero (i.e. log2(<1)=0).
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Figure 3: Description of features on Wheat Expression Browser using Multiple gene comparisons.

Features

Sorting

Factors can be sorted within each category in two ways.

1. The first is by simply clicking the mouse on top of the coloured rectangles underneath the heading. For example in Figure
2 samples are sorted on High level age from seedling (red), vegetative (blue)to reproductive (green). If the
user clicks on any of the coloured rectangles in the High level tissue category, then the graph is automatically
reorganised based on this factor. In this case it includes four categories as defined by the user in the metadata and the
bar graphs on the right hand side change colour according to the latest factor used for sorting. The previous factor used
(in this case high level age)remains as a secondary sorting factor (Figure 3).
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Figure 4: Example of new sorting of data based on clicking of rectangles within “high level tissue”.

. Alternatively, the user can define the exact order of factors within the browser interface. To do so the filter option
(point 11 above) can be used. By clicking on the double arrow button the user opens a pop-up window which shows the
levels within the factor. In this example by pressing the double-arrow underneath high level tissue a pop-up with
four levels appears based on the order as determined in the user defined metadata ( spike, grain, leaves/shoots,
roots ). To rearrange this, the user can simply click, hold and drag the level to the desired position. This will
automatically re-arrange the data based on the new order and the corresponding graph and legends will follow suit. The
bottom panel of Figure 5 shows a new order of roots, leaves/shoots, spike and grain.
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Figure 5: Example of sorting of data based on new user defined order within the filter pop-up window.

Filtering

In cases it may be required to remove certain samples from the visualisation. Note that displaying or hiding a category (point
12 above) does not remove the underlying data from the visualisation: this just simply groups the data within the selected
category. Therefore to remove samples from the visualisation the user can open the filter pop-up as described for the
Sorting option. Individual levels within the category can then be removed by using the “check-box” on the left hand side of
the level name. By de-selecting a given level (in the example for Figure 6 we have deselected leaves/shoots and spike),
samples defined as such will be removed from the analysis and will not be shown in the bar graphs. In Figure 6 now only two
levels remain ( roots and grains ) and hence the bar graphs only show these two levels. Notice that the numbers of
samples which comprise each bar graph are the same as those on Figure 5. The pop-up window also includes an all and
none option to rapidly select/deselect individual samples. The filtering option can be used on any factor: for example to
remove a complete study from the analysis the easiest way is to select the study filtering pop-up on the far left and deselect

the study in question.
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Figure 6: Example of filtering data based on user defined selection within the filter pop-up window.



Text S2. Application of expVIP to rice allows integration of previous studies

The rapid progress in sequencing technologies has meant that genomes and transcriptome
references for a species are constantly improved. In some species, multiple references are
available, making it difficult to compare results between studies. This problem is exemplified
in rice, where two different genome annotations are widely used: the Rice Annotation Project
(RAP) and Michigan State University (MSU) gene models (Ohyanagi et al., 2006; Ouyang et

al., 2007).

To test the use of expVIP to integrate data we analysed two studies (SRA: DRP000716 and
SRP028766) which examined gene expression changes in rice in response to phosphate
starvation. DRP000716 compared the response to 22 days of phosphate (Pi) starvation in
four rice varieties with varying levels of tolerance to Pi stress: the japonica cultivar
Nipponbare with low tolerance, two japonica cultivars with higher tolerance IAC 25 and Vary
Lava, and the indica cultivar Kasalath known to be highly tolerant to Pi stress (Oono et al.,
2013). The second study SRP028766 investigated how the japonica cultivar Nipponbare
responded to a time-course of Pi starvation at 1 h, 6 h, 24 h, 3 days, 7 days and 21 days
(Secco et al., 2013). Both studies used 2 week old seedlings grown in hydroponic conditions
which enables their comparison, however each study used a different annotation of the rice
genome (DRP000716 used RAP, SRP028766 used MSU). We used expVIP to align and
guantify gene expression for both studies, using the RAP gene models (release date
31.03.2015, from http://rapdb.dna.affrc.go.jp) as a common reference. We used sleuth to
identify genes which were differentially expressed between varieties in DRP000716 (each
variety under phosphate starvation was compared to the same variety without phosphate
starvation) and between time-points in SRP028766 (phosphate starved plants were

compared to plants at the same time-point which were in phosphate sufficient conditions).
Validation of previous results

DRP000716 — Inter-variety comparison: We found that similar numbers of genes were up

and downregulated in all four varieties (Figure S3A), although Kasalath roots had fewer

genes downregulated than in any other variety. We identified approximately 2-fold fewer



differentially expressed transcripts than published previously (Oono et al., 2013), which is
likely due to the use of a defined reference in our study, whereas before de novo transcripts
including multiple isoforms were also assembled. We found a total of 163 genes upregulated
and 34 genes downregulated in roots and shoots of all varieties. Amongst these upregulated
genes, many are known to be involved in phosphate response including SPX1 and SPX3
(Wang et al., 2009) and the phosphate transporter PHT1;4 (Zhang et al., 2015). The
downregulated genes included genes related to primary metabolism, e.g. ribulose
bisphosphate carboxylase, and genes involved in abiotic stress responses such as RISBZ5,

a potential negative regulator of drought and cold stress response (Liu et al., 2012).

SRP028766 — time-course: As previously reported we found that relatively few genes were

induced within a short time period after imposition of phosphorous starvation (1h, 6h and 24
h; Figure S3B). At 3 days many genes become differentially expressed in roots, whereas
there are still few genes differentially expressed in shoots. At 7 and 21 days several
thousand genes are up and downregulated in roots and shoots. These results correspond
well to the previously reported trends (Secco et al., 2013): we found that the early response
(1 h - 3 days) to phosphate starvation involves suites of different genes at each time-point in
roots and as previously reported no genes were differentially expressed in roots in common

between all early time-points.
Comparison between DRP000716 and SRP028766

First we investigated whether the two different studies identified similar genes to be
differentially expressed in the cultivar Nipponbare after 21 or 22 days under phosphate
starvation. We found that in total 1,565 and 2,001 genes were differentially expressed in
shoots and roots, respectively, across both studies (Figure S3C). We identified fewer
differentially expressed genes in DRP000716 than in SRP028766, which may reflect the
lower number of reads mapped in the former (15.5 million and 46.2 million, respectively). We
found that amongst genes which were differentially expressed in both studies, there was a
higher correlation of fold change in genes expressed in the roots (R? = 0.64) than in genes

expressed in the shoots (R?= 0.38) (Figure S3D). This suggests that changes in root gene



expression were more consistent between studies (more shared genes, and more highly
correlated fold changes in expression), and for this reason we focused our analysis on

genes differentially expressed in roots.
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Figure S3. Comparison of differentially expressed genes identified in DRP00716 and
SRP028766. (A) Genes differentially expressed after 22 days phosphate starvation in four
rice cultivars. (B) Genes differentially expressed during a timecourse of phosphorous
starvation in Nipponbare. In (A) and (B) filled bars represent upregulated genes, empty bars
represent downregulated genes. (C) Differentially expressed genes identified in DRP000716
and SRP028766 at 22 and 21 days after phosphate starvation respectively in Nipponbare.
Upregulated genes are shown in black, downregulated genes in grey. (D, E) Natural log (In)
fold change (FC) in genes differentially expressed under phosphate starvation in
SRP028766 and DRP000716 in (D) shoots and (E) roots.



The integration of both studies with the same reference genes allows easy comparison
between studies (above) and allows new hypotheses to be tested using existing data. We
hypothesised that genes which are differentially expressed in roots of all four varieties from
DRP000716 might be conserved phosphate responsive genes and should also be identified
in SRP028766. To test this hypothesis we identified genes which were differentially
expressed at 22 days in DRP000716 in all four varieties, and genes differentially expressed
in each individual variety (Figure S4). For genes which were differentially expressed in
individual varieties between 50 and 61 % were also differentially expressed in SRP028766 at
21 days (Figure S4). Amongst the genes conserved between all four varieties a higher
percentage (81 %) were also detected in SRP028766: this suggests that not only are these
genes conserved between varieties but they are also induced in independent experiments to
a higher degree and would be strong candidates to investigate conserved phosphate

responsive genes.
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Figure S4. Intersection between genes differentially expressed in roots of all varieties and
time-course expression. Differentially expressed genes identified in DRP000716 (striped
bars) are also identified after 21 days phosphate starvation in SRP028766 (filled bars).
Genes differentially expressed in all four varieties are called conserved.

Amongst these 726 conserved genes many have functions related to phosphate regulation
including phosphate transporters (PHT1-1, PHT1-4, PHT1-6, PHT1-8, PHT1-10) and SPX1,
SPX2 and SPX3 (Wang et al., 2009). Interestingly 91 genes have unknown functions and do
not contain known interpro protein domains. An additional 32 genes contain domains of

unknown function (DUF), one of which is represented in five genes: DUF581. In Arabidopsis



it has been proposed that DUF581 genes respond to specific environmental stresses and
interact with SnRK1 to balance energy status (Nietzsche et al., 2014). These 5 genes
(0s03g0183500, Os04g0585700, Os069g0125200, Os069g0223700, Os09g0433800) are
upregulated 3-734 fold under phosphate starvation and may represent novel phosphate

responsive genes.
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